A note on some identities of derangement polynomials

نویسندگان

  • Taekyun Kim
  • Dae San Kim
  • Gwan-Woo Jang
  • Jongkyum Kwon
چکیده

The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r-derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

Some identities on the weighted q-Euler numbers and q-Bernstein polynomials

Recently, Ryoo introduced the weighted q-Euler numbers and polynomials which are a slightly different Kim’s weighted q-Euler numbers and polynomials(see C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, 2011]). In this paper, we give some interesting new identities on the weighted q-Euler numbers related to the q-Bernstein polynomials 2000 Mathematics Subject Classification 11...

متن کامل

A Note on Degenerate Hermite Poly–bernoulli Numbers and Polynomials

In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polynomials and give some identities of these polynomials related to the Stirling numbers of the second kind. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of d...

متن کامل

A note on degenerate Changhee-Genocchi polynomials and numbers

In this paper, we consider the degenerate Changhee-Genocchi polynomials and numbers, and give some identities for these numbers and polynomials. AMS subject classification: 11B68, 11S40, 11S80.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018